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Abstract

In one and two spatial dimensions, Lax—Wendroff schemes provide second-order accurate optimally-stable
dispersive conservation-form approximations to non-linear conservation laws. These approximations are an im-
portant ingredient in sophisticated simulation algorithms for conservation laws whose solutions are discontinuous.
Straightforward generalization of these Lax—Wendroff schemes to three dimensions produces an approximation
that is unconditionally unstable. However, some dimensionally-split schemes do provide second-order accurate
optimally-stable approximations in 3D (and 2D), and there are sub-optimally-stable non-split Lax—Wendroff-type
schemes in 3D. The main result of this paper is the creation of new Lax—Wendroff-type second-order accurate
optimally-stable dispersive non-split scheme that is in conservation form. The scheme is created by using linear
equivalence to transform a symmetrized dimensionally-split scheme (based on a one-dimensional Lax—Wendroff
scheme) to conservation form. We then create both composite and hybrid schemes by combining the new scheme
with the diffusive first-order accurate Lax—Friedrichs scheme. Codes based on these schemes perform well on
difficult fluid flow problems.
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1. Introduction

Three-dimensional systems of hyperbolic conservation laws have the form
U= fU):+gWU),+hU),, (1)

where U (t, x, v, z) is a vector of unknowns, f, g, h are smooth functions, and subscripts indicate partial
derivatives. (Two-dimensional systems are obtained by assuming U is independent of z and 1D systems
are obtained from 2D systems by assuming that U is independent of y.) Our goal is to find a second-
order accurate optimally-stable, non-split discretization of (1) and then combine this discretization with
a diffusive discretization to produce composite or hybrid schemes that will effectively solve problems
with shock or contact discontinuities.

Stability is assessed by applying von-Neumann stability analysis to the discretization applied to the
scalar linear conservation law (advection equation), that is, where U is a scalar function and f(U) =a U,
gWU)=>bU, and h(U) =c U, and where a, b, and c are constants. For a uniform space—time grid with
spacing At, Ax, Ay and Az, the stability region is given in terms of the dimensionless CFL numbers
A =alAx/At, u =bAx/At and T = c Ax/At. It is well known that stability of an explicit scheme
implies that |[A| < 1, || < 1 and |7] < 1. Optimally-stable schemes in 3D are those that have the this
cube as their stability region (square in 2D and interval in 1D).

One of best known classical finite difference schemes for solving 1D conservation laws is the
optimally-stable second-order accurate Lax—Wendroff (LW) scheme. In [11], a 2D optimally-stable
second-order accurate variant of the LW scheme was created by approximately solving 1D Riemann
problems on the edges of grid cells. Unfortunately, the generalization of this scheme to 3D is uncondi-
tionally unstable [11]. In [12], this unstable scheme was modified to produce two sub-optimally-stable
schemes. Also, a family of 3D schemes with their stability and accuracy analysis has been presented in
[8].

A common method of extending a 1D scheme to multiple dimensions is to use dimensional splitting
(described below). However, the simplest dimensionally-split schemes are not symmetric, and even the
well-known Strang splitting [16] is not symmetric, and these asymmetries produces noticeable adverse
effects in simulations. Dimensional splitting can be symmetrized, but then the scheme becomes computa-
tionally costly. If two schemes are considered linearly equivalent if they reduce to the same scheme when
f, g and h are linear (when the conservation law is linear), then equivalent schemes will have the same
linear stability and accuracy, and we can hope that equivalent schemes will have similar non-linear prop-
erties. Here we create a Lax—Wendroff-type symmetric optimally-stable second-order accurate non-split
scheme linearly equivalent to the fully-symmetric dimensionally-split LW scheme.

The modified equation for a scheme is found by expanding the scheme in a Taylor series in the time
and spatial steps and then grouping the terms according to the degree of homogeneity in the steps. The
zero-order term must be the original equation while the next non-zero term will contain derivatives of the
solution of the original equation of some order. If this order is odd, then the scheme is called dispersive,
otherwise it is diffusive or anti-diffusive. Generally, for stable schemes, first-order accurate schemes
are diffusive, while second-order accurate schemes are dispersive. Because Lax—Wendroff schemes are
always dispersive, they produce solutions that oscillate near discontinuities and, in particular, oscillate
behind shocks. The schemes we use for practical computation of complex flows are made by combining a
dispersive scheme with a diffusive, first-order accurate Lax—Friedrichs scheme to form either composite
or hybrid schemes.
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2. Lax—Friedrichs and Lax—Wendroff schemes

The simplest schemes for hyperbolic conservation laws are the first-order accurate diffusive Lax—
Friedrichs schemes and the second-order accurate dispersive Lax—Wendroff schemes. We use schemes
that can be written in predictor—corrector form in a staggered grid. The staggered grid consists of a
primary grid where points are labeled with (i, j, k) and a dual grid where points are labeled with (i + 1,
Jj+ %, k+ %). In 3D, the centers of the cell faces of the primary grid are given by (i + % Jj+ % k), etc.,
while the center of cell edges in the primary grid are given by (i + %, J, k), etc. In 2D, the centers of the
cell edges in the primary grid are given by (i + % J), etc.

2.1. ID schemes

The predictor for the 1D Lax—Friedrichs (LF) scheme computes values on the dual grid from values
on the primary grid:

n 1 n n At n n
Ui-:—ll//22 = Q(Ui + U+ m(f(U,-H) - £(U})), 2

while the corrector is defined by the same formula with both the i and » indices shifted by one-half and
thus it computes values on the primary grid from values on the dual grid. This predictor—corrector scheme
is less diffusive than the one-step variant, first-order accurate and optimally stable.

The Lax—Wendroff (LW) scheme uses the predictor (2) for the LF scheme and the corrector

At
1 n n+1/2 n+1/2
Uin+ =U; + E(f(Ui+l/2 ) - f(Ui—l/Z )) 3)
and is optimally stable, second-order accurate, dispersive, and in conservation from.
2.2. 2D schemes
In 2D, the predictor for the two-step forms of LF and LW schemes is [11]
1
n+1/2 n n n n
Ui jvip = Z(Ui,j + UM U UL )
n At (F-,1+1/4 Fn+1/4 ) n At (Gn+1/4 Gn+l/4 ) (4)

i+1,j+1/2 = i j+1/2 IAx i+1/2,j+1 — Yi+1/2,j

where the fluxes F' and G are evaluated as the LF approximate solutions of the 1D Riemann problems at
the center of edges of primary grid at time level n + 1/4:

n 1 n n At n n
Fi,;’:{?z = f(E(Ui,j+1 + Ui,j) + m(g(Ui,j-H) - g(Ui,j)))’

0 1 At ,
Giill/;j = g(E(U&],]’ + Uir,lj) + A—y4(f(Uin+1,j) - f(Ullj)))

As in 1D, the LF corrector is the predictor with indices i, j, and n shifted by one half. The LW corrector
uses central differencing in space and time:
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URF = Ul o (F(UEE ea) + F(OERE o) = PO ) = £ )
+ ﬁTty (g(Uin:ll//zz,jH/z) + g(Uin—Jrll//22,j+1/2) - g(Uin++11//22,j—1/2) - g(Uin—+11//22,j—1/2))'
The properties of these schemes are the same as in 1D.
2.3. 3D schemes
The straightforward generalization [12,11] of the 2D two-step LF and LW schemes lead to the predic-
tor

n+1/2 b n n n
Uil o, jrjpksip = §(Ui,j,k U YU T U

n n n n
+U i YU UG+ Ui+1,j+1,k+1)

At
+ m(f(Uin:ll,;il/z,k+l/2) - f(U:;rJ:{jz,k+l/2))

At
+ E (g(UinJ:rl]//Zé,Lj+1,k+l/2) - g(Uin++11//2itj,k+1/2))

At n n
+ E(h(Ui—:_ll//;j+l/2,k+l) - h(UiJ:rll//z‘,th/z,k))'

The values at the center of all faces of the primary cell on time level n + 1/4 are computed using the
analog of 2D predictor (4):

n+1/4 _ 1 n n n n
Ui,j+1/2,k+l/2 - Z(Ui,j,k + Ui,j-i-l,k + Ui,j,k+1 + Ui,j+1,k+l)

At .
+ m (g(Ui,;LJ:{?kM/z) - g(Ui’?;Iifl/z))
At n n
+ iz (h(Ui,;:{?z,kH) - h(Ui,,;:{?z,k))» )

with similar formulas for the other faces. The values at the center of the edges of the primary cell on time
level n + 1/6 are evaluated by an analog of 1D predictor (2):

n 1 n At n
Ui:11//26,j,k = E(Ui,j,k + in+1,j,k) + @(f( ier,j,k) —f( i,j,k))’ (6)

with similar formulas for the other edges. Again, as in 1D and 2D, the LF corrector involves the same
formulas with the indices i, j, k and n shifted by a one half and produces optimally stable scheme, while
the LW corrector uses:

At At

Ul =0+ E(Fﬂrl/z,j,k — Fioippji) + A_y(GiJ“/zﬂk = Gij1724)
At
+ A—Z(Hi,j,k-q-l/z - Hi,j,k—l/z)’

where the fluxes at the centers of the edges are given by simple averaging:
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Fig. 1. The dependence of the maximum absolute value of the amplification factor over all three Fourier angles on the CFL
number when A = . = t for the LW scheme in 3D.

1 nt1/2 n+1/2 nt1/2
Fivi,j0= Z(f(Ui+1/2,j+l/2,k+l/2) + f(Ui+l/2,j—1/2,k+l/2) + f(Ui+1/2,j+1/2,k—1/2)

+ f(Uin—:rll/éz,j—l/Z,k—lﬂ))’
with similar formulas for the other edges.

Von Neumann stability analysis was used in [11] to prove that this two-step 3D LW scheme is un-
conditionally unstable (for the advection equation). Fig. 1 shows the dependence of maximum (over all
three Fourier angles) of the absolute value of amplification factor on the CFL numbers when A = = 7.
For small CFL numbers the maximum amplification factor is very close to one and so the instability
is very mild, e.g. for the CFL number A = u = v = (.2 the amplification factor has the value 1.00003
and the Fourier components of the solution will doubled only after more than 20 000 time steps because
1.000032090 2 Note that also in [8] some 3D discretizations are unconditionally unstable.

A possible way to stabilize this unstable scheme [12] is to use only an average when approximating
values at the center of edges (6) (which is the same as using C = 0 in (7) given below). We have tried to
generalize this idea further by introducing a time level n + C (where C € [0, 1/4)) instead of time level
n—+ % and replacing the values at the center of edges (6) by

n 1 n At n
Ui:l?Z,j,k = E(Ui’?j,k + i+1,j,k) + CA—x(f( in+1,j,k) — f( i,j,k))' )

This gives a family of difference schemes depending on the parameter C. Stability regions of these
schemes have been estimated by numerical sampling of the amplification factor of the schemes. The
largest stability region was obtained when C = 0, for which the stability region includes the cube
max(|A[, [ul, |T]) < 0.854. We call the scheme with C = 0 the corrected Friedrichs (CF) scheme.

We have also tried to use values at the center of cube faces (5) on a time level n + D instead of
n + 1/4, so introducing second parameter D. However varying both parameters did not lead to bigger
stability region. Simpler 3D schemes with numerical fluxes at the center of faces being only averages
of fluxes at corresponding four corners have been proposed in [12]. These schemes are computationally
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fast, so we call them the fast LF (FLF) and the fast CF (FCF) schemes. Their disadvantage is that their
stability region is given by the cube max(|A|, |u|, |T]) < 1/ /3 which is rather small.

3. Optimally-stable schemes based on dimensional splitting

We will create optimally-stable schemes by starting with a simple dimensionally-split scheme, sym-
metrizing this scheme, and then transforming the result using linear equivalence to a nice non-split
conservation form. In 3D, dimensionally-split schemes for the conservation laws (1) are created by suc-
cessively approximating the solutions of the three 1D conservation laws U, = f(U)y, U; = g(U),, and
U; = h(U).. The operators of the 1D solvers are called L, L, and L. The symmetrized dimensionally-
split scheme is given by averaging all possible simple dimensionally-split schemes. We then build a
non-split scheme linearly equivalent to the symmetrized scheme by applying the transformations of type

A+B>

L+ pamy)— (222 ®)
2 2

to all of the numerical fluxes given by f, g and h. Because linear equivalent schemes are the same for
linear equations, they all have the same linear stability region and the same accuracy for linear equations.
When A is a complicated expression and B is simple, we will write B = f(A) as f~'(B) = A to simplify
the formulas. After the derivation, we explicitly show that the scheme is second-order accurate also for
non-linear problems.

In 2D we do have an optimally-stable second-order LW-type difference scheme CF. However we first
present the derivation of a different non-split optimally-stable second-order scheme from dimensionally
split one in 2D as the procedure is much simpler and easier to understand in 2D than in 3D. Then we will
use the same method to derive new 3D scheme.

3.1. 2D split schemes

A simple non-symmetric dimensionally-split scheme (NSS) is
Ut =L'L*Uy;.
The 1D numerical solution operators L* and LY are given by the 1D LW scheme (2)—(3) rewritten to 2D:
X n n At n n
L (Ui,j) =U;;+ E(f(Ul-:ll/zzj) - f(Uz—Jrll//zzj))
) n n At n n
L’ (Ui,j) = Ui,j + A_y(g(Uzﬁﬁz) - g(U:;r—l{iz))
n 1 n n At n n
Ui—:rll//22,j = E(Ui,j + Ui—H,j) + m(f(UiH,j) - f(Ui,j))
n 1 n n At n n
Ui = S+ Ul + E(g(Ui,m) —8(U7)))- ©)

This scheme is theoretically only first-order accurate and optimally stable. Note that the Strang splitting
L* LY LY L~ [16] is second-order but not symmetric.
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The symmetrized dimensionally-split scheme (SYS) is
1
n+1
urtt = E(L"Ly +L'LY)(Ul)). (10)

Clearly SYS is computationally twice as costly as NSS, but it is second-order accurate, symmetric and
optimally stable.

3.2. 2D non-split schemes

We now transform the split scheme SYS (10) to a non-split scheme using linear equivalence (8). The
first part of the combined operator (10) is

. n - At nt1/2 ' 12
(L Ly)(Ui,j) =L’ (Ui,j) + A_x(f(LyU)HJ—rl/Z,j - f(L) U):'ljl/2,j)

At " n At n+1/2 n+1/2
=Uj; + A_y(g(Uz;iﬁz) - g(Uz;L—lﬁz)) + A—x(f(LyU)i-tl/Z,j - f(LyU):l/z,j)

with an analogous expression for the second part. Linear equivalence can be used to transform SYS into
conservation form:

" 1
Ui =3 (1L + 1L (U)

a o AL i nt1/2 At ot n+1/2
=U;;+ A_x(Fi+l/2,j - Fi—l/2,j) + A_y(Gi,j-H/Z - Gi,j—l/Z)’ (11

where
1
n+1/2 n+1/2 n+1/2
Flijg = f(g(Um/z,j + (LyU)i—H/Z,j))'
The first term in the argument of f results from the L”L*U part of (10) and the second one from the
L*L>U part. Now we substitute for U;" j’ll/zz ; using (9) and for (LU ):71'11//; ; using the same formula, just
replacing U by L>U, to obtain
1 At
-1 n+1/2 n n n n
SHFS ) = Z(Ui,j + Ul ) + IAx (f(U;) = F(UE)))
1 N n \ n At n ) n
+ Z((L} U)i,j + (Ly U)i+1,j) + m(f(LyU)iH,j o f(L} U)i,j)'
After substitution for L*U from (9) and another linear-equivalence transformation of the fluxes, we
obtain the final formula for numerical flux:

1 At
-1 +1/2 +12 12 112 T
f (Fiil/lj) = E(Ulr,,j + U,-’Z+l,j) + 4Ay (ng+1/2 + g?+1’j+1/2 - ng—l/Z — gl'n-i-l,j—l/Z)
—At At n+1/2 n+1/2
+ 2Ax (f (U’ﬂl!f + 2Ay (gi+1,j+1/2 - gi+l,j—1/2)

" At iip n+1/2
- f<Ui,j + 2Ay (812 =8 i-12) ) )
where the symbols g with indices means the flux function evaluated at the value of U with the same

indices. Values on the time level n + % are computed from (9). The 2D dimensional splitting based
scheme (DSBS) is obtained by repeating this process for G.



596 M. Kucharik et al. / Applied Numerical Mathematics 56 (2006) 589-607

3.3. 2D stability and accuracy

Because DSBS is linearly equivalent to SYS, and SYS is optimally stable, then so is DSBS. However
we will independently check this result. The amplification factor of DSBS for the special case u = A is
A2(1— A2

2
g p)] _1_4(1+z3)2(1+z,3)2 ’

where
T =4t — 02t} + 2t} + 20t + 2028) + 1 41,

where 7, = tan(«/2), f, = tan(B/2), and @ and B are the Fourier angles. Using a computer algebra
program for quantifier elimination [4,1], we proved that |g(a, B)|*> < 1 for all @ and B if and only if
|A] < 1, so the scheme is optimally stable in this case. Using the same approach for the general case
A #£ u, we proved that DSBS is optimally stable.

Because of the linear equivalence, the scheme will be second-order accurate for the linear advection
equation. For non-linear fluxes, the situation is not obvious as the transformations during the construction

might disturb the accuracy. However, DSBS is symmetric in the spatial indices, so we expect it to be
second-order in the spatial variables. A Taylor expansion of the scheme in A¢, Ax and Ay gives

1
U - fU —¢g'U,+ SAIT + o(Ar?*) =0, (12)
where

T = Utl - f/2Uxx - g/zUyy - Zf/f”Uf - 2g,g”U\% - 2Uny(f,g” + f”g,) - 2f/g/ny-

If we differentiate (12) with respect to ¢ and keep only zeroth order terms in Ar we get
U, — f//UtUx — f/U,x — g//U,Uy — g/Uty =0,

which, after elimination of U,, U;, and U,, by using (12) and its space derivatives, transforms into 7' =0
and thus DSBS is second-order accurate for general fluxes.
So DSBS is second-order accurate, non-split, symmetric and optimally stable.

3.4. 3D split schemes

The simple 3D non-symmetric dimensionally-split scheme (3D NSS) is given by

n+l __ gxyygrzyrn
Ui’j’k_L L’L Ui’j’k,

where the operators L* and L~ are defined by (9) and the operator L* is defined analogously. This scheme
is simple, fast, non-symmetric and optimally stable. Theoretically it is only first-order accurate, however
practically it is second-order as seen in Table 2 below.
In 3D there are 6 different products of the operators L*, LY, and L%, so to make a symmetrized
dimensionally-split scheme (SYS), we average these combinations:
Uty = é(LxLyLZ + LLLY + L' L*L* 4+ L'LL* + L'L*L” 4+ L*L"L*) (U} ;). (13)

This scheme is second-order accurate, symmetric and optimally stable.
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3.5. 3D non-split schemes

As in 2D, we will start with one term in 3D SYS (13) and transform it using linear equivalence (8):

(L1 L) (U7 ) = (L L) (U7 4) + 2_;(}‘ (o)L, - (o)t )
=Uijx+ 2—;(8 (UIT) — s(UILE)
F O = T W) )
+ i—i(h(LXLYU);;LfI = h(L"LyU)Z;L/_ZI )

The other terms can be transformed in the same way. To get the conservation form

At At
+1 _ n+1/2 n+1/2 n+1/2 n+1/2
ir,lj,k - Uil?j,k + A_x(Fi+1/2,j,k - Fi—l/2,j,k) + _(Gi,j+l/2,k - Gi,j—1/2,k)

Ay
At 12 nt1/2
+ A_Z(Hi,j,k+1/2 - Hi,j,k—1/2) (14)
of 3D SYS (13), we use linear equivalence to collect all terms with same flux at same point, e.g. for the
point (n + %,i + %, j. k) we get E’fll/zzjk
1 1
n+1/2 n+1/2 n+1/2 n+1/2
Fivipje= f<§Ui+1/2,j,k + g((LyU)i+1/2,j,k+(LZU)i+1/2,j,k)
1 ! n+1/2 s \nt1/2
+ g ((L) LZU)[+1/2,j,k+(LZL} U)i+l/2,j,k) :

Next we move first from staggered grid (in index i) to original grid and then expand the outer operator
in terms L”L* and L*L”, and then move from staggered grid again, and finally expand all remaining
operators L” and L* to get the final numerical flux:

! (Ftrfjll//;]k) = %(Uin+l,j,k + U ) + 6A—Atz(h?++11,/jz,k+1/2 - h?illy/ﬁkflﬂ)
6ATAIZ (h?,;}c/fl/z - hl"l,_}—,}c/—zl/Z) + % (87:11,//'11/2& - g;’:ll,/jz—l/lk)
i B s = 600000 + o B = A1)
+poag A= B 0) + s (Gr s = G )
G~ O )
+ ﬁTﬁc (f |:U,-n+1,j,k T %(g?ill,ﬁl/lk - g?ill’/fz‘l/z’k)
?aAth(h?Ll,/ﬁkH/z - h?:ll,fk—l/z) + %(iitlﬁﬂﬂ - ﬁlﬂlﬁ“‘/Z)
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At ot ~ntl/2
+ y (Gi+1,j+1/2,k =Gl k)

AV n+1/2 At 12 nt1/2
- f|:Uir,lj,k + 3Ny (& Tk — &) + 3Az (Wi, —hi 5 00)

At~ 1 Snt1)2 At~ ~n+1/2
+ 6A7 (B b1 — Ha D p) + 6y (Gl =Gl | ) (15)

where

1 At
~nt1/2 n+1/2 nt1/2
H = h(Z(Uzn, et F U )+ 2Ay (gi,j+l/2,k+l - gi,j—l/Z,k-H)

At ( n+1/2 n+1/2 )

+ 2Ay gi,j+1/2,k _gi,j—1/2,k
—At n At n+1/2 n+1/2
+ 2A7 [h(U ikl T Ay (gz J+1/2.k+1 — 8ij—1)2, k+1)
n n+1/2 n+1/2
_h<U /k+ (glj+1/2k g,j 1/2k)>:|)' (16)

Similarly

~nt12 (1 At 12 n+1/2
Gi,j+1/2,k = g(E(UfjJrl,k + ”:'l,j,k) + _2Az (hi,j+1,k+1/2 - hi,j-&-l,k—l/Z)

At ( n+1/2 prL2 )

ijk+1/2 7 i jk—1/2
At n At n+1/2 n+1/2
+ —ZA [ (Ui+l,j,k + Az (hi,j+1,k+1/2 — hi,j+l,k—1/2)
At ot n+1/2
(Unj -y 2Az (hi,j,k+1/2 - hi,j,k—l/z) . (17)

Similar expressions for the other numerical fluxes G:’;’jr/]z/z , and H; ”+1/ g '1/» can be derived using the same

process. The 3D dimensional splitting based scheme (3D DSBS) is then defined by (14).
3.6. 3D stability and accuracy

Because 3D DSBS is linearly equivalent to 3D SYS, it has to be optimally stable and second-order
accurate for the advection equation. For general non-linear fluxes, the Taylor expansion of the 3D DSBS
gives

’ ’ 1 At 2
—fo—gUy—hUz+7T—|-O(At)=0, (18)
where
T=U,—2f f'U; —2¢'8"U; —=2'h"U? — f?Usy — Uy — WU = 2'8'Usy — 2f'h' Uy
_ zg/h/UyZ 2U U (f/ " f//g/) _ 2UxUz(f/h// + f//h/) _ 2UyUZ(g/h// + g//h/)- (19)
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As in 2D, the elimination of U,, and other time derivatives by differentiation of (18) and subsequent
substitutions results in 7" = 0, and thus 3D DSBS is second-order accurate for general fluxes. So DSBS
is second-order accurate, non-split, optimally stable, symmetric scheme.

4. Practical schemes

Solutions of non-linear conservation laws commonly contain shocks or contact waves and thus are dis-
continuous. Simple dispersive schemes will display oscillations near the discontinuities, while diffusive
schemes will smooth the discontinuities excessively. It is common practice to combine dispersive and
diffusive schemes to obtain practical schemes for producing quality solutions of non-linear conservation
laws. We have implemented two types of schemes: composite [12] and hybrid [3] schemes.

4.1. Composite schemes

Composite schemes [12] add diffusivity to a dispersive scheme by taking a time step with the diffusive
scheme every few steps taken with the dispersive scheme. In contrast with the hybrid methods described
next, this adds diffusivity globally, not just near the discontinuities, the advantage being that composite
schemes are less costly. When we combine optimally-stable dispersive second-order-accurate scheme
with an optimally-stable diffusive first-order scheme, we obtain an optimally-stable first-order scheme.
The scheme that combines n — 1 steps of the LW scheme followed by one step of the LF scheme is labeled
LW LF n, with typically n = 4. In 3D we use CF, FCF or DSBS instead of LW to obtain optimally-stable
CF LF n, FCF LF n and DSBS LF »n schemes.

4.2. Hybrid schemes

Hybrid schemes add diffusivity locally by combining a dispersive flux with a diffusive flux with a
switch that only applies the diffusion near the discontinuities. For example, for LW and LF,

U =U! + (Fis12 — Fizip),
where
Fivip=ain1pFy 1+ (=i ) FY .

The switch «; 1,2 € [0, 1] should be zero in smooth regions and one near discontinuities so that the hybrid
scheme keeps second-order accuracy in smooth regions, is first-order near discontinuities, but removes
any oscillation near the discontinuity. In 1D and 2D, we use LW as the dispersive scheme, while in 3D
we use CF, FCF or DSBS for the dispersive scheme.
‘We have tested several switches from [7] and found that the Harten switch [2] had the best behavior:
Qit1/2 = max(@;’, @l»’l+1),

where

Ui — U 11U Uy | ym

+1 n o _ yn n__grn
on — | Klion —umor—ur | for [UY, = U +|U" = UL | >4
1

0 for |UZ, — U +|U" — U || <6.
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Here § > 0 is a parameter which avoids division by a small numbers, 0 < ¥ < 1 and m > 1. In multiple
dimensions, we apply the switch each direction independently. The extra cost of the hybrid scheme is
that we must compute both fluxes and the switch in each time step and all spatial points. The advantage
is that hybrids schemes remain second-order in regions where the solution is smooth.

For the hybrid scheme we need to put the 3D LF scheme into conservation form:

ntl 1 “n+1/2 Snt1/2 ~n+1/2 ~n+1/2 ~n+1/2 ~n+1/2
Uiik=Uijx*+ (Fi+1/z,j,k - Fifl/Z,j,k) + (Gi,j+1/2,k - Gi,jfl/z,k) + (Hi,j,k+1/2 - Hi,j,kfl/z)‘

The most complicated part of deriving the LF numerical fluxes is the splitting of averages on different
levels and collecting them into the numerical fluxes. The final expression for the numerical flux is

~nt1/2 1 At (Un+3/4 At n+1/4

— n+1/4
Fiipin= Eﬂf U,

i+1/2,j,k) + m(f(Ui+l,j+1/2,k+l/2) + f( i,j+1/2,k+1/2))

At n n
+ 16Ax (f(Ui-:_l%ili-l/Zk—l/Z) + f(Ui,;i{‘/‘z,k—l/Z))

At n n
+ 16Ax (f(Ui—:_l{éil/lk—i-l/Z) + f(Ui,}F—l{é/‘Z,k—i-lﬂ))

At
+ 16Ax (f(Uiriil,;il/lkf]/Z) + f(Uir,ljfl{‘/‘Zkf]/Z))

1 1
+ 192 ;( in-',-l,jil,kj:l - ir,ljil,kj:l) + 48 ;( in+1,jj:1,k - i’?j:tl,k)

] n n 7 n n
+ @ ;(Uiﬁ,j,kil - Ui,j,kﬂ:l) + @( i+1,j,k — Ui,j,k)’

where the values for U"+3/4, yr+4/6 yn+1/2 yn+l/4 and U"*t/® are obtained from the appropriate
equations (5) and (6) for the standard 3D LF scheme. The other numerical fluxes 6, H are derived
analogously.

We have implemented all of the described schemes in all dimensions [6]:

CF—Corrected Friedrichs, non-split, not optimally stable.

FCF—Fast Corrected Friedrichs, non-split, not optimally stable.
NSS—Non-Symmetric Split, split, optimally stable.

SYS—Symmetric Split, split, optimally stable.

DSBS—Dimensional Splitting Based Scheme, non-split, optimally stable.

In the next section we will report on numerical tests of the 3D implementations of a modest selection of
these schemes.
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5. Numerical tests

To test our schemes, we use the 3D Euler equations [10]:

p pu pv pw
ou ou*+p PUY PUW

pv | + puv +| pv*+p | + pVw =0,
pow puw pvw pw2+p

E ], u(E+p)) . W(E+p) ), w(E+p)/,

where u, v and w are the components of the fluid velocity, p is the fluid density, p fluid pressure and E
the density total energy density. The pressure and the energy are related by the equation of state of ideal
gas,
14 1 2 2 2
E=——+4- ,
— ~|—2,0(u +v” +w?)

where y is the adiabatic gas index.
5.1. Implementation

For 3D problems, both the computational and storage cost can easily overwhelm a modern computer,
so it is important to obtain a good balance between these costs. We can estimate the cost of storing the
five dependent variables on a grid with N> cells as 5 x 8 x N bytes (one double float number requires 8
bytes). So for a grid with 300® points, this exceeds 1 GB. So we minimized the number of 3D arrays to
one and substantially reduced the computation time by using a system of 2D arrays to store intermediate
results. This causes interdependencies in the code, slowing the code a bit, but its benefits outweigh its
disadvantages.

The time step is adaptively computed after each computational step as the minimum of the time steps
over all grid cells with given CFL number and with wave speeds being the eigenvalues of Jacobian
matrices in all three directions.

5.2. Numerical examples
Here we present numerical results for several problems:

e Smooth solution—We used this for comparing computing times and testing the basic properties of
all elementary schemes.

e Noh problem—This is a difficult and practical problem with a shock and an analytic solution. We
provide comparative tests for all five composite schemes.

e Explosion problem—The solution contains shock, contact, and rarefaction waves. Also, there is a
Raleigh—Taylor instability that disappears if the scheme has too much diffusion, so we use very little
diffusion.

e Riemann problem—The initial data for this problem starts with eight different values on eight octants
that meet at a point, resulting in a solution with complex behavior. We use DSBSLF4 to provide a
high-quality solution for this problem.
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Table 1
The number of flux evaluations in each computational step for various schemes, and
the computation times with the maximal stable CFL numbers for the smooth problem

Scheme Nr. of flux CFL CPU time [s]
evaluations

CF 12 0.85 377

FCF 6 0.57 239

NSS 6 1.0 126

SYS 30 1.0 768

DSBS 21 1.0 894

Table 2

The L1 density errors for the smooth problem on 50° and 1003 grids along with the
order of approximation computed from the ratio of these errors

Scheme L?O L}OO logz(%)
LF 1.78 x 10~1 9.20 x 102 0.95
CF 1.65 x 1072 4.08 x 1073 2.02
FCF 1.66 x 1072 4.02 x 1073 2.05
NSS 1.26 x 1072 3.18 x 1073 1.99
SYS 1.26 x 1072 3.18 x 1073 1.99
DSBS 1.26 x 1072 3.18 x 1073 1.99

5.2.1. Smooth problem
Here we use a problem (generalized to 3D from [5]), with a simple analytic solution, to check the
speed, stability, and accuracy of the basic dispersive schemes. The solution is

1.
,O(X,y,z,t)z1+§s1n(n(x+y+z—t[u+v+w]))

with constant values of the pressure p and all three velocity components u#, v and w. The tests use
p=05u=0.1,v=0.2, w=0.3 and a final time 7 = 0.5. The problem is solved in the cube [0, 273
using periodic boundary conditions.

In our tests (on 650 MHz Alpha server), we used a grid with 100° points. The most time expensive
part of a computational step is the evaluation of non-linear fluxes and the number of time steps taken
which increases with decreasing maximum stable CFL number. In Table 1 we present CPU time together
with number of flux evaluation per time step and the maximum CFL number for all five second-order
dispersive schemes.

The fastest scheme is NSS because it uses the smallest number of flux evaluations and it has an
optimal stability region. FCF, with the same number of flux evaluations, is slower than NSS by a factor
approximately proportional to the ratio of their CFL numbers. CF is slower than NSS and FCF because
it uses more flux evaluations. SYS and DSBS are the slowest because of their large number of flux
evaluations, with DSBS scheme slower than SYS scheme because of the complexity of formulas (15)—
(17) defining the flux.

Table 2 presents L; density errors of all schemes, including LF, on 503 and 1003 grids, and the order
of approximation computed from the ratio of these errors. As expected, LF is first-order, with all other
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Table 3

The L1 and Lmax density errors for each scheme for the Noh problem on 503, 1003 and 2003 grids
Scheme L Lo 73200 LY L% 2%
LF 3.71 1.88 0.96 40.0 42.1 422
CFLF 4 1.62 0.82 0.41 38.2 41.3 40.7
FCFLF 4 2.30 1.11 0.58 37.9 42.1 40.7
NSSLF 4 1.64 0.91 failed 40.3 40.3 failed
SYS LF 4 1.58 0.86 0.45 34.2 36.7 38.1
DSBS LF 4 1.58 0.72 0.40 342 41.5 39.9
hybrid DSBS LF 1.22 0.66 0.32 447 423 459

schemes being second-order. NSS, SYS and DSBS have the same accuracy and are more accurate than
CF and FCF schemes.

5.2.2. Noh problem

In Fig. 2, we will use five composite schemes to plot the solutions of the classical Noh problem [13],
which is a difficult test problem [14]. Because this problem has an analytic solution, we can compute the
errors which are given in Table 3. The initial data for the Noh problem are a constant value of pressure
(p = 0) and density (p = 1), while the velocity is a unit vector directed towards the origin, and the gas
constant is y = 5/3. We solve this problem in the unit cube [0, 1]>. The exact solution of this problem is:

B 64 forr < Vi,
p= (1+§)2 forr > Vt,

where V = 1/3 is the speed of a moving spherical shock wave, # is the time and r is the distance of a point
from the origin. The pressure remains zero outside the spherical shock and is constant inside, p = 64/3,
while the velocity is zero inside the spherical shock and a unit vector directed towards origin outside. On
three faces of the cube going through the origin, the boundary conditions are given by symmetry, while
on the other three faces we use exact boundary conditions from the known analytic solution.

Fig. 2 displays the density p as a function of r at the time T = 2.7, using 90° grid points. The exact
solution is given by the black line. We can see that for the schemes (c)—(f) derived from the dimensional
splitting idea, the density values are more dissipated inside the circular shock than for the schemes (a) and
(b). However their dip at the origin is less pronounced. The hybrid DSBSLF scheme (f) has the biggest
overshoot on the shock and is more oscillatory as is the case also for the other tests.

The L, and L. errors for the five composite schemes are summarized in Table 3. The LF scheme is
the worst because it is only first-order and too diffusive. FCF LF 4 is worse than CF LF 4 probably due
to the smaller CFL number causing more time steps. NSS LF 4 failed on the fine grid, probably due to
its lack of symmetry. SYS LF 4 is worse than DSBS LF 4 which is slightly better than CF LF 4. From
the scatter plots, we know that CF LF 4 has less variation inside the central constant region, however it
has bigger dip in the center. The hybrid DSBS LF has the best L errors however the biggest L ,.x errors
as it has the biggest overshoot on the shock and it is oscillatory.

5.2.3. Explosion problem
CF LF 40 is used to simulate an explosion problem inspired by the 2D explosion problem from [17]
that generates a spherical wave. By symmetry, we need only solve the problem inside the cube [0, 1.5]3.
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Fig. 2. Scatter plot of the density for the 3D Noh problem computed by (a) CF LF 4, (b) FCF LF 4, (c) NSSLF 4, (d) SYS LF 4,
(e) DSBS LF 4 and (f) hybrid DSBS LF using their maximal stable CFL numbers.

The initial velocity is zero while the initial data for the density and pressure have a jump on a sphere of
radius 0.4 centered at the origin. Inside the sphere, p = 1 and p = 1, while outside the sphere p = 0.125
and p = 0.1. The gas constant is y = 1.4. On three faces of the cube, the boundary conditions are given
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Fig. 3. Density isosurface at the contact wave, combined with three 2D cuts along the coordinate planes, for the solution of
the explosion problem computed by CF LF 40 using its maximal stable CFL number. On the right, the upper Rayleigh-Taylor
instability is zoomed.

by symmetry, while on the other three faces, free boundary conditions are employed. The solution was
simulated to time T = 2.5 using a grid with 260° points. The use of one diffusive step every 39 dispersive
step means that very little diffusion has been added, with more diffusion Rayleigh—Taylor instabilities
would not appear.

The solution has a shock that travels away from the center and the contact discontinuity behind the
shock. A rarefaction wave goes towards the origin where it is reflected. The contact becomes weaker and
after some time it comes to rest and then travels inwards. Rayleigh—Taylor instabilities appear on the
surface of the contact wave. Fig. 3 shows the isosurface of density at the contact with three 2D cuts along
the coordinate planes at T = 2.5.

5.2.4. Riemann problem

The 3D Riemann problem is a generalized version of Riemann problem 4 from [15,9]. The region is
the cube [0, 1]° which is divided in to eight octants that are labeled in the obvious way with the binary
numbers 000 through 111, and then using these labels, the initial conditions are presented in Table 4. The
value of gas constant is y = 1.4. Free boundary conditions are used.

Table 4

Initial values for the Riemann where p; = 0.5065, pp = 1.1000, p; = 0.3500, po = 1.1000 and vy = 0.8939
Octant 000 100 010 110 001 101 011 111
o 02 P1 o1 02 P1 02 02 P1
u Vo 0 Vo 0 Vo 0 Vo 0

v Vo ) 0 0 Vo Vo 0 0
w vo Vo Vo Vo 0 0 0 0

p P2 P1 P1 P2 P1 P2 P2 P1
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Fig. 4. The solution of the Riemann problem using DSBS LF 4 T = 0.25: (a) a global view of the isosurface with density
p = 1.5, (b) the slice in the plane z = 0, which should give the 2D solution, (c) the slice in the plane z = 0.612, at the middle of
the moving 3D object.

We simulate this problem on a very fine grid of size 300° using DSBS LF 4 with a CFL number of
1.0 and show the results at time 7 = 0.25 in Fig. 4. Part (b) shows a 2D cut on the face of computational
cube that should reproduce the 2D solution and does corresponds well to results from [15,9]. For the 2D
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solution, the growing moving lens shaped region between the curved shocks has higher density than the
initial density p,, while in 3D there appears a growing moving volume between the surfaces of 3D shock
waves with density higher than that in 2D.

6. Conclusion

In 3D, we have created a new Lax—Wendroff-type optimally-stable second-order accurate non-split
dispersive scheme that is in conservation form. When combined with the Lax—Friedrichs scheme to make
a hybrid scheme, the resulting scheme produces quality simulations of difficult problems.

Acknowledgement

This research was supported in part by the Czech Grant Agency grant 201/00/0586, by the National
Science Foundation grant CCR-9531828, by the Ministry of Education of the Czech Republic project
MSM 6840770010 and by the US Department of Energy at Los Alamos National Laboratory, under
contract W-7405-ENG-36.

References

[1] G.E. Collins, H. Hong, Partial cylindrical algebraic decomposition for quantifier elimination, J. Symbolic Comput. 12 (3)
(1991) 299-328.

[2] A. Harten, The artificial compression method for computation of shocks contact discontinuities: III self adjusting hybrid
schemes, Math. Comp. 32 (1978) 363-389.

[3] A. Harten, G. Zwas, Self-adjusting hybrid schemes for shock computations, J. Comput. Phys. 6 (1972) 568-583.

[4] H. Hong, R. Liska, S. Steinberg, Testing stability by quantifier elimination, J. Symbolic Comput. 24 (2) (1997) 161-187,
Special issue on Applications of Quantifier Elimination.

[5] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202-228.

[6] M. Kuchatik, Diferen¢ni schemata pro zdkony zachovéani ve 3D [Difference Schemes for Conservation Laws in 3D],
Master’s thesis, Czech Technical University, 2002.

[7] C.B. Laney, Computational Gasdynamics, Cambridge University Press, Cambridge, 1998.

[8] J.O. Langseth, R.J. LeVeque, A wave propagation method for three-dimensional hyperbolic conservation laws, J. Comput.
Phys. 165 (2000) 126-166.

[9] P.D. Lax, X.-D. Liu, Solution of two dimensional Riemann problem of gas dynamics by positive schemes, SIAM J. Sci.
Comput. 19 (2) (1998) 319-340.

[10] R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhiduser, Basel, 1990.

[11] R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM J. Numer. Anal. 35 (6) (1998) 2250-2271.

[12] R. Liska, B. Wendroff, Composite centered schemes for multidimensional conservation laws, in: M. Fey, R. Jeltsch (Eds.),
Hyperbolic Problems: Theory, Numerics, Applications, Seventh International Conference in Ziirich, February 1998, vol. II,
Internat. Ser. Numer. Math., vol. 130, Birkhiduser, Basel, 1999, pp. 661-670.

[13] W.E. Noh, Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux, J. Comput. Phys. 72
(1987) 78-120.

[14] W.J. Rider, Revisiting wall heating, J. Comput. Phys. 162 (2000) 395-410.

[15] C.W. Schulz-Rinne, J.P. Collins, H.M. Glaz, Numerical solution of the Riemann problem for two-dimensional gas dynam-
ics, SIAM J. Sci. Comput. 14 (1993) 1394-1414.

[16] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (3) (1968) 506-517.

[17] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 1997.



